Iron deficiency alters megakaryopoiesis and platelet phenotype independent of thrombopoietin
نویسندگان
چکیده
Iron deficiency is a common cause of reactive thrombocytosis, however, the exact pathways have not been revealed. Here we aimed to study the mechanisms behind iron deficiency-induced thrombocytosis. Within few weeks, iron-depleted diet caused iron deficiency in young Sprague-Dawley rats, as reflected by a drop in hemoglobin, mean corpuscular volume, hepatic iron content and hepcidin mRNA in the liver. Thrombocytosis established in parallel. Moreover, platelets produced in iron deficient animals displayed a higher mean platelet volume and increased aggregation. Bone marrow studies revealed subtle alterations that are suggestive of expansion of megakaryocyte progenitors, an increase in megakaryocyte ploidy and accelerated megakaryocyte differentiation. Iron deficiency did not alter the production of hematopoietic growth factors such as thrombopoietin, interleukin 6 or interleukin 11. Megakaryocytic cell lines grown in iron-depleted conditions exhibited reduced proliferation but increased ploidy and cell size. Our data suggest that iron deficiency increases megakaryopoietic differentiation and alters platelet phenotype without changes in megakaryocyte growth factors, specifically TPO. Iron deficiency-induced thrombocytosis may have evolved to maintain or increase the coagulation capacity in conditions with chronic bleeding.
منابع مشابه
PKC-epsilon deficiency alters progenitor cell populations in favor of megakaryopoiesis
BACKGROUND It has long been postulated that Protein Kinase C (PKC) is an important regulator of megakaryopoiesis. Recent contributions to the literature have outlined the functions of several individual PKC isoforms with regard to megakaryocyte differentiation and platelet production. However, the exact role of PKCε remains elusive. OBJECTIVE To delineate the role of PKCε in megakaryopoiesis....
متن کاملProtein kinase C δ deficiency enhances megakaryopoiesis and recovery from thrombocytopenia.
OBJECTIVE We previously determined that protein kinase C δ (PKCδ) regulates platelet function. However, the function of PKCδ in megakaryopoiesis is unknown. APPROACH AND RESULTS Using PKCδ(-/-) and wild-type littermate mice, we found that deficiency of PKCδ caused an increase in white blood cells and platelet counts, as well as in bone marrow and splenic megakaryocytes (P<0.05). Additionally,...
متن کاملIncreased expression of HIF2α during iron deficiency–associated megakaryocytic differentiation
BACKGROUND Iron deficiency is associated with reactive thrombocytosis; however, the mechanisms driving this phenomenon remain unclear. We previously demonstrated that this occurs alongside enhanced megakaryopoiesis in iron-deficient rats, without alterations in the megakaryopoietic growth factors thrombopoietin, interleukin-6, or interleukin-11. OBJECTIVES The aim of this study was to evaluat...
متن کاملPACAP and its receptor VPAC1 regulate megakaryocyte maturation: therapeutic implications.
Megakaryocytes and platelets express the Gs-coupled VPAC1 receptor, for which the pituitary adenylyl cyclase-activating peptide (PACAP) and the vasointestinal peptide (VIP) are agonists. We here demonstrate a regulatory role for VPAC1 signaling during megakaryopoiesis. A total of 2 patients with trisomy 18p with PACAP overexpression and transgenic mice overexpressing PACAP in megakaryocytes hav...
متن کاملA functional role of Stat3 in in vivo megakaryopoiesis.
The signal transducer and activator of transcription 3 (Stat3), a member of the Stat family of proteins, is commonly activated by thrombopoietic cytokines including thrombopoietin (TPO), interleukin (IL)-6, and interleukin-11. This finding strongly suggested that Stat3 has an important role in megakaryopoiesis and thrombopoiesis. To clarify the functional role of Stat3 in in vivo megakaryopoies...
متن کامل